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Question. Given a list of properties, does there exist an algebraic system
(e.g. group, associative algebra, Lie algebra, etc.) that satisfies them?

To answer the above question it is natural to define the object using
generators and defining relators;

However, there can be unexpected corollaries of the initial relators
and the final object may become trivial;
Adian-Rabin theorem states that there is no algorithm that takes as
an input a finite group presentation and decides if the given group is
trivial.

Which kinds of presentations are good?

A.Atkarskaya (HUJI) 17.09.2024 2 / 17



Question. Given a list of properties, does there exist an algebraic system
(e.g. group, associative algebra, Lie algebra, etc.) that satisfies them?

To answer the above question it is natural to define the object using
generators and defining relators;

However, there can be unexpected corollaries of the initial relators
and the final object may become trivial;
Adian-Rabin theorem states that there is no algorithm that takes as
an input a finite group presentation and decides if the given group is
trivial.

Which kinds of presentations are good?

A.Atkarskaya (HUJI) 17.09.2024 2 / 17



Small cancellation groups

Let G = ⟨x1, . . . , xn | R1, . . . ,Rk , . . .⟩ be a group, where all Ri are
cyclically reduced, the list of relators is closed under taking inverses and
cyclic shifts of relations.

If Ri ̸= Rj and Ri = cR ′
i , Rj = cR ′

j , then c is called a small piece.

We say that G satisfies condition C(m) if every Ri can not be written as a
product of less than m small pieces.

If m ⩾ 7, then G is hyperbolic.
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Small cancellation groups

Theorem (Geendlinger’s Lemma)

If G satisfy C(7) and A = 1 in G, then A = LuR, where uu′ = Ri for
some i and |u| > 1

2 |Ri |.

So, Dehn’s algorithm solves the word problem in G .

It A = B in such G and A,B do not contain > 1
2 of any Ri , then A, B can

be viewed as paths in a one-layer map.
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Rips construction

There exist subgroups of small cancellation groups with exotic properties.

Theorem (E. Rips, 1982)

There is a finitely presented small cancellation group G such that:

G has finitely generated subgroups whose intersection is not finitely
generated.

G has a finitely generated but not finitely presented subgroup.

The subgroup membership problem in G is not solvable.
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Iterated small cancellation theory

Given G = ⟨x1, . . . , xn | R1, . . . ,Rt , . . .⟩, our goal not small cancellation
conditions, our real goal is Greendlinger’s Lemma.

There are many group presentations with the following structure:

{R1, . . . ,Rt , . . .} = R1 ∪R2 ∪ . . . ,

where every Ri satisfies C (m) and moreover Ri satisfies C (m) modulo
Rj , j ⩽ i . Then every intermediate quotient F/⟨⟨R1, . . . ,Ri ⟩⟩ satisfies
Greendlinger’s Lemma. Thus, G satisfies it as well.

The Burnside group (f.g. group with identity xn = 1) is infinite for
odd n ⩾ 557 (S. Adian and P.Novikov, A.Olshanskii, E. Rips, K. Tent,
A.A.), and even n ⩾ 8000 (S. Ivanov, I. Lysenok).

Construction of Tarskii monster group (infinite group with all proper
subgroups cyclic of the same order) by A.Olshanskii.
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Constructing rings with exotic properties

This is a joint work with A. Kanel-Belov, E. Plotkin and E. Rips.

Our initial motivation is the following old problem in Ring Theory (which
is still not solved):

Problem (1970s, Kaplansky, L’vov, Latyshev)

Does there exist a division algebra infinite dimensional over its center with
finitely generated multiplicative group?

One can quickly see that such algebra can not be commutative.

Our general idea is as follows. We want to take such a quotient of Z2F, F
is a non-abelian free group, that it is infinite dimensional over its center
and its every element is equal to a monomial.
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Clearly, it is sufficient that every binomial 1 + w is equal to a monomial.
So, we enumerate all elements of F, {w1,w2, . . .}, and impose the
relations 1 + wi = vi on Z2F. Now the question is if Z2F/I, where
I = ⟨⟨1 + wi = vi ; i = 1, 2, . . .⟩⟩, is infinite dimensional over its center (or
at least non-trivial).

Notice that it is easy to produce a quotient of Z2⟨x , y⟩ that is infinite
dimensional over Z2 and with every element equal to a monomial
(everything what we want except inverting).
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Gröbner-Shirshov bases of polynomial ideals

We fix deglex order on monomials. Let I = ⟨⟨f1, f2, . . .⟩⟩ ◁ k⟨x1, . . . , xm⟩.
Then f1, f2, . . . is a Gröbner-Shirshov basis of I if for every Q ∈ I the
leading monomial of Q is of the form Lf iR, where f i is the leading
monomial of fi .

So Q ∈ I can be transformed to 0 by the greedy algorithm, which consists
of steps: Q 7−→ Q − LfiR, etc.. (the steps are called reductions).

If L1fiR1 and L2fjR2 have the same highest monomials, then
S(fi , fj) = L1fiR1 − L2fjR2 is called s-polynomial.

Theorem

{f1, f2, . . .} is a Gröbner-Shirshov basis of the ideal I if and only if all
s-polynomials of fi , fj can be reduced to 0.
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We consider words of the form ui = x2y ixy for i > 0. Now we enumerate
all pairs of words in the semigroup ⟨x , y⟩ and impose the relations
wj + wk = ui(j ,k) on Z2⟨x , y⟩, where we choose i(j , k) > 2(|wj |+ |wk |).
Then ui(j ,k) is the leading monomial of wj +wk = ui(j ,k). Clearly, us , ut do
not have overlaps for s ̸= t. Therefore, {wj + wk = ui(j ,k)}j ,k is a
Gröbner-Shirshov basis of the corresponding ideal I .

The set of words x j , j > 0, is linearly independent by the property of
Gröbner-Shirshov basis.

Now let us add inverses. Namely, take Z2⟨x , y , a, b⟩, take the same
wj + wk = ui and add xa = ax = yb = by = 1. Then we have overlaps in
the set of the highest monomials. Take the s-polynomial for ax − 1 and
ui − wj − wk :

a(ui − wj − wk)− (ax − 1)xy ixy = xy ixy − awj − awk .

The leading monomial xy ixy has an overlap with another ut . Adding more
and more s-polynomials produces more and more overlaps of the highest
monomials.
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Deglex ordering does not work well for “group-like” relations.

Let G = ⟨x , y | R1, . . . ,Rn⟩ be given by a finite symmetrised Dehn’s
presentation. Then kG ∼= kF/I , where I = ⟨⟨R1 − 1, . . . ,Rn − 1⟩⟩.
Consider the following set of generators of I : {Aij − Bij}i ,j , where
AijB

−1
ij = Ri . It is not a Gröbner-Shirshov basis of I with respect to

deglex order.

U1 V1

U2 V2

D
Rs = U1D

−1V−1
1

Rt = V1V
−1
2 D

U1U2 − V1V2 = 0 in kG , but it do not contain leading monomials of any
relators Aij − Bij . Notice that this can happen even if G satisfy C (7).
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Small cancellation rings

Let I = ⟨⟨pi =
nj∑
j=1

αijmij ; i ⩾ 1⟩⟩◁ kF, R = {pi ; i ⩾ 1} and

M = {mij}i ,j .

Condition (Compatibility Condition)

For every α ∈ k we have α · pi ∈ R.

If mij = xm′
ij , then x−1 · pi ∈ R.

If mij = m′
ijx, then pi · x−1 ∈ R.
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Small pieces for rings

Let C ∈ M,

p =

m1∑
i=1

αiai + A1CA2 ∈ R, q =

m2∑
i=1

βibi + B1CB2 ∈ R.

If at least one of B1 · A−1
1 · p and p · A−1

2 · B2 does not belong to R (even
after the cancellations), then C is called a small piece with respect to R
We require that 1 is a small piece.

There exists a generalization of small pieces (in the group sense) called
graph small cancellation condition. The above definition follows similar
intuition.

R ′
i

R ′
j

c
R ′
iR

′−1
j /∈ R
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Small cancellation condition for rings

Condition (Small Cancellation Condition)

Assume q1, . . . , qn ∈ R and a linear combination
n∑

j=1
γjqj is non-zero after

additive cancellations. Then there exists a monomial A in
n∑

j=1
γjqj with a

non-zero coefficient such that

either A can not be represented as a product of small pieces,

or every representation of A of a form A = c1 · · · cl ,
where c1, . . . , cl are small pieces,
contains at least 11 small pieces.
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Structure of small cancellation rings

“Informal structure theorem”

Theorem (A.A., A. Kanel-Belov, E. Plotkin, E. Rips, 2021)

Let kF/I be a small cancellation ring, I = ⟨⟨pi ; i ⩾ 1⟩⟩. Then it is
non-trivial, its structure can be described in terms of “multi” one-layer
maps, and {pi}i⩾0 is a Gröbner-Shirshov basis of I with respect to a
special monomial order.

U
m(1) m(2) m(3) m(4)

m(i) are maximal occurrences of elements from M in a word U. They are
used to define a complexity of U and the order on monomials is based on
the complexity.
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Small cancellation rings: examples

If G = ⟨x1, . . . , xn | R1, . . . ,Rt , . . .⟩, then kG ∼= kF/I, where
I = ⟨⟨Ri − 1; i ⩾ 1⟩⟩. If G satisfies C(m), m ⩾ 22, then kG is a small
cancellation ring.

Notice that the above set of generators of I itself does not satisfy small
cancellation conditions. We need to extend it.

Let I = ⟨⟨1 + w = v⟩⟩◁ kF, where v = xαyxα+1y . . . yxβy , and
|w | ≪ α ≪ β. Then kF/I is a small cancellation ring.

Again we need to extend the generating set to fulfil small cancellation
conditions. Small pieces here are subwords of w±N and subwords of v±1

that contain less than two letters y±1.
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Further research

Develop iterated small cancellation theory for rings.

Study further properties of small cancellation rings.

Small cancellation rings are non-amenable and contain free associative
subalgebras (A.A., 2023).
Prove generalisation of Bergman’s centraliser theorem (N.Miasnikov
gave a partial description of centralisers in kF).

Develop geometric theory for rings in parallel to geometric group
theory.
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