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Introduction

We survey what is known about evaluations of a polynomial p in
several non-commuting variables taken in a matrix algebra Mn(K )
over a field.
It has been conjectured that for any n, when p is multilinear, the
image of p is either zero, or the set of scalar matrices, or the set
sln(K ) of matrices of trace 0, or all of Mn(K ).
The conjecture is true for n = 2 and K being

any quadratically closed field. (Kanel-Belov, Malev, Rowen)
R or any real closed field. (Malev)
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Nonmultilinear polynomials

Although the analogous assertion fails for completely homogeneous
polynomials, one can salvage the conjecture in this case by
including the set of all non-nilpotent matrices of trace zero and also
permitting dense subsets of M2(K ).
For M3(K ) power central polynomials exist.
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Kaplansky’s question

We consider the version for algebras, reputedly raised by Kaplansky,
of the possible image set Im p of a polynomial p on matrices.
When p = x1x2 − x2x1, its image consists of all matrices of trace 0,
by a theorem of Albert and Muckenhoupt.
Over a finite field K , Kaplansky’s question was settled for arbitrary
polynomials by Chuang, who proved that a subset S ⊆ Mn(K )
containing 0 is the image of a polynomial with constant term zero,
if and only if S is invariant under conjugation.
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Definition

A polynomial p ∈ K 〈x1, . . . , xm〉 is called multilinear of degree m
if it has degree 1 in each variable. Thus, a polynomial is multilinear
if it is of the form

p(x1, . . . , xm) =
∑
σ∈Sm

cσxσ(1) · · · xσ(m),

where Sm is the symmetric group in m letters and cσ ∈ K .
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Linear span of the image.

At first glance, our question looks rather easy. Over an infinite
field, one can ascertain the linear span of the values of multilinear
polynomial. The linear span of its values comprise a Lie ideal since

[a, p(a1, . . . , an)] = p([a, a1], a2 . . . , an)+p(a1, [a, a2] . . . , an)+ · · · .

Herstein characterized Lie ideals of a simple ring R as either being
contained in the center or containing the commutator Lie ideal
[R,R].
It is more difficult to determine the actual image set Im p, rather
than its linear span.
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Kaplansky’s conjecture

Lvov formulated Kaplansky’s question as follows:
Let p be a multilinear polynomial over a field K . Is the set of
values of p on the matrix algebra Mn(K ) a vector space?
An explicit version:
Conjecture: If p is a multilinear polynomial evaluated on the matrix
ring Mn(K ), then Im p is either {0}, K , sln(K ), or Mn(K ). Here K
is the set of scalar matrices and sln(K ) is the set of matrices of
trace zero.
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Examples

Im (p) can really be
{0}, let p be any PI, in particular s2n (see Amitsur-Levitzky
theorem)
the set sln(K ) of matrices of trace 0, let p(x , y) = [x , y ]

Mn(K ), let p(x) = x

or the set of scalar matrices
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Minimal central polynomial on Mn(K )

Problem
What is the smallest possible degree c(n) of a multilinear central
polynomial identity in the algebra of n × n matrices?

Formanek (1972): an example of degree n2.
Razmyslov (1973): an example of degree 3n2 − 2.
Halpin(1983): Uses Razmyslov method to construct an example of
degree n2.
Thus c(n) ≤ n2.
c(1) = 1 and c(2) = 4
Drensky, Kasparian (1983): c(3) ≥ 8 (1985): c(3) = 8

Conjecture (Formanek (1991))

c(n) = 1
2(n

2 + 3n − 2)

Drensky, Piacentini Cattaneo (1994): c(4) ≤ 13.
Drensky (1995): c(n) ≤ (n − 1)2 + 4 for n ≥ 3.
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The case n = 2

Theorem (Malev)

If p is a multilinear polynomial evaluated on 2× 2 matrices with
entries in the arbitrary field K , then Im p satisfies one of the
following:

Im p={0},
Im p is the set of scalar matrices, or
Im p ⊇ sl2(K )

Theorem (Malev)

Let p(x1, . . . , xm) be a multilinear polynomial evaluated on 2× 2
matrices with real entries. Then Im p is one of the following:

{0},
the set of scalar matrices,
sl2(R), or
M2(R)
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The case n = 2

Theorem (Kanel-Belov, Malev, Rowen)

If p is a homogeneous Lie polynomial evaluated on the matrix ring
M2(K ) (where K is an algebraically closed field), then Im p is either
{0}, or K (the set of scalar matrices), or the set of all
non-nilpotent matrices having trace zero, or sl2(K ), or M2(K ).

Example (Kanel-Belov)

Take h(u1, . . . , u8) central on 3× 3 matrices. For the 2× 2
matrices x1, . . . , x9 we consider the homogeneous Lie polynomial
p(x1, . . . , x9) = h(ad[[[x1,x9],x9],x9], adx2 , adx3 , . . . , adx8)(x9).

Alexei Kanel-Belov1,2, Sergey Malev3, Louis Rowen1
Evaluations of non-commutative polynomials on finite dimensional algebras.



The case n = 2

Theorem (Kanel-Belov, Malev, Rowen)

If p is a homogeneous Lie polynomial evaluated on the matrix ring
M2(K ) (where K is an algebraically closed field), then Im p is either
{0}, or K (the set of scalar matrices), or the set of all
non-nilpotent matrices having trace zero, or sl2(K ), or M2(K ).

Example (Kanel-Belov)

Take h(u1, . . . , u8) central on 3× 3 matrices. For the 2× 2
matrices x1, . . . , x9 we consider the homogeneous Lie polynomial
p(x1, . . . , x9) = h(ad[[[x1,x9],x9],x9], adx2 , adx3 , . . . , adx8)(x9).

Alexei Kanel-Belov1,2, Sergey Malev3, Louis Rowen1
Evaluations of non-commutative polynomials on finite dimensional algebras.



The case n = 2

Theorem (Kanel-Belov, Malev, Rowen)

If p is a homogeneous Lie polynomial evaluated on the matrix ring
M2(K ) (where K is an algebraically closed field), then Im p is either
{0}, or K (the set of scalar matrices), or the set of all
non-nilpotent matrices having trace zero, or sl2(K ), or M2(K ).

Example (Kanel-Belov)

Take h(u1, . . . , u8) central on 3× 3 matrices. For the 2× 2
matrices x1, . . . , x9 we consider the homogeneous Lie polynomial
p(x1, . . . , x9) = h(ad[[[x1,x9],x9],x9], adx2 , adx3 , . . . , adx8)(x9).

Alexei Kanel-Belov1,2, Sergey Malev3, Louis Rowen1
Evaluations of non-commutative polynomials on finite dimensional algebras.



The case n = 3

Theorem (Kanel-Belov,Malev,Rowen)

If p is a multilinear polynomial evaluated on 3× 3 matrices over
algebraically closed field then Im p is one of the following:

{0},
the set of scalar matrices,
dense subset of sl3(K )

a dense subset of M3(K ),
the set of 3-central matrices, or
the set of scalars plus 3-central matrices.
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The case n ≥ 4

Theorem (Kanel-Belov,Malev,Rowen)

If p is a multilinear polynomial evaluated on 4× 4 matrices, over
algebraically closed field, neither PI nor central then dim Im p ≥ 14,
equality holding only if any value of p has eigenvalues
(λ1, λ2,−λ1,−λ2).

Theorem (Kanel-Belov,Malev,Rowen)

If p is a multilinear polynomial evaluated on n × n matrices, over
algebraically closed field, neither PI nor central then
dim Im p ≥ n2 − n + 3.
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Quaternion algebra

Theorem (Malev)

Let p(x1, . . . , xm) be a multilinear polynomial evaluated on
quaternion algebra Then Im p is one of the following:

{0},
the set of scalars,
the set of vectors, or
the set of all quaternions.
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Octonion algebra

Theorem (Kanel-Belov,Malev,Pines,Rowen)

If p is a multilinear polynomial evaluated on the Octonion algebra
O, then Im p is either {0}, or R ⊆ O (the space of scalar
octonions), or V ⊆ O – the space of pure octonions, or O.

We also classify possible images of semi-homogeneous polynomials:

Theorem (Kanel-Belov,Malev,Pines,Rowen)

If p is a semihomogeneous non-commutative non-associative
polynomial of weighted degree d 6= 0 evaluated on the the octonion
algebra O, then Im p is either {0}, or R, or R≥0, or R≤0, or V , or
some Zariski dense subset of O.
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Malcev algebra

Definition
Malcev algebra is is a nonassociative anticommutative algebra that
satisfies the Malcev identity:

(xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y .

We will consider the Malcev algebra (V , [·, ·]).
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Main theorem

Theorem (Kanel-Belov, Malev, Pines, Rowen)

Let p(x1, . . . , xm) be arbitrary polynomial in m anticommutative
variables. Then its evaluation on V can be either {0} or V .

Proof.

‖p(x1, . . . , xm)‖2 is a polynomial in 7m variables.
It is either

0
not 0
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Example

p can be PI of V :

p(x1, x2, . . . , x15) = s14(adx1 , adx2 , . . . , adx14)(x15).

Remind: adx(y) = [x , y ],

sn(x1, . . . , xn) =
∑
σ∈Sn

(−1)σxσ(1) · · · xσ(n).
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Jordan algebras

Definition
A Jordan algebra is a non-associative algebra whose multiplication
◦ satisfies the following axioms:

1 x ◦ y = y ◦ x (commutativity)
2 (x ◦ y) ◦ (x ◦ x) = x ◦ (y ◦ (x ◦ x)) (Jordan identity).

Definition
We define Jn (n-dimensional Jordan algebra) as follows:

the base of Jn is the set {e0 = 1, e1, . . . , en−1},
the product ◦ is defined as 1 ◦ x = x ◦ 1 = x for any x ,
ei ◦ ej = δij .
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Examples

1 J3: self-adjoint 2× 2 real matrices with standard Jordan
product x ◦ y = xy+yx

2 . Basis: 1 being the identity matrix,

e1 =

(
1 0
0 −1

)
, and e2 =

(
0 1
1 0

)
.

2 J4: self-adjoint 2× 2 complex matrices. Basis:

{e0 = 1, e1, e2, e3}, e3 =

(
0 i
−i 0

)
.

3 J6: self-adjoint 2× 2 quaternionic matrices. Basis

{e0 = 1, e1, . . . , e5}, e4 =

(
0 j
−j 0

)
, e5 =

(
0 k
−k 0

)
.

4 J10: self-adjoint 2× 2 octonionic matrices. Basis

{e0 = 1, e1, . . . , e9}, e6 =

(
0 l
−l 0

)
, e7 =

(
0 il
−il 0

)
,

e8 =

(
0 jl
−jl 0

)
, e9 =

(
0 kl
−kl 0

)
.
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Main Theorem

Theorem (Malev, Yavich, Shayer)

Let p be any commutative non-associative polynomial. Then its
evaluation on Jn is either {0}, or R (i.e. one-dimensional subspace
spanned by the identity element), the space of pure elements V
((n − 1)-dimensional vector space 〈e1, . . . , en−1〉) , or Jn.
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Examples

1 The associator p(x , y , z) = (xy)z − x(yz). Im p = V .
2 We can construct the example of central polynomial as well: if

p(x , y , z) is an associator, then p(x1, y1, z1) ◦ p(x2, y2, z2) is
central.

3 p(p(x1, y1, z1) ◦ p(x2, y2, z2), y3, z3) (where p is associator) is
PI.
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Open problems

Problem
Does there exist a multilinear 3-central polynomial evaluated on
M3(K )?

Problem
Does there exist a Lie 3-central polynomial evaluated on M3(K )?

Problem
What can be the image set of a multilinear polynomial evaluated on
M3(R)?

Problem
Classify all possible 15-dimensional image sets of a multilinear
polynomial evaluated on M4(K ) and 23- and 24-dimensional image
sets of a multilinear polynomial evaluated on M5(K )?
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Thank you!
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