Vavilov Memorial September 17-19, 2024 Saint Petersburg State University, 14 line V.O., 29B, Room 201, Saint Petersburg, RUSSIA

Evaluations of non-commutative polynomials on finite dimensional algebras.

Alexei Kanel-Belov 1,2 , Sergey Malev 3 , Louis Rowen 1

 1 Bar-Ilan University,² MIPT, ³ Ariel University

19 September 2024

We survey what is known about evaluations of a polynomial p in several non-commuting variables taken in a matrix algebra $M_n(K)$ over a field.

It has been conjectured that for any n , when p is multilinear, the image of p is either zero, or the set of scalar matrices, or the set $sl_n(K)$ of matrices of trace 0, or all of $M_n(K)$. The conjecture is true for $n = 2$ and K being

• any quadratically closed field. (Kanel-Belov, Malev, Rowen)

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

• R or any real closed field. (Malev)

We survey what is known about evaluations of a polynomial p in several non-commuting variables taken in a matrix algebra $M_n(K)$ over a field.

It has been conjectured that for any n , when p is multilinear, the image of p is either zero, or the set of scalar matrices, or the set $sl_n(K)$ of matrices of trace 0, or all of $M_n(K)$. The conjecture is true for $n = 2$ and K being

• any quadratically closed field. (Kanel-Belov, Malev, Rowen)

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

• R or any real closed field. (Malev)

We survey what is known about evaluations of a polynomial p in several non-commuting variables taken in a matrix algebra $M_n(K)$ over a field.

It has been conjectured that for any n , when p is multilinear, the image of p is either zero, or the set of scalar matrices, or the set $sl_n(K)$ of matrices of trace 0, or all of $M_n(K)$. The conjecture is true for $n = 2$ and K being

• any quadratically closed field. (Kanel-Belov, Malev, Rowen)

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

 $\bullet \mathbb{R}$ or any real closed field. (Malev)

Although the analogous assertion fails for completely homogeneous polynomials, one can salvage the conjecture in this case by including the set of all non-nilpotent matrices of trace zero and also permitting dense subsets of $M_2(K)$. For $M_3(K)$ power central polynomials exist.

Although the analogous assertion fails for completely homogeneous polynomials, one can salvage the conjecture in this case by including the set of all non-nilpotent matrices of trace zero and also permitting dense subsets of $M_2(K)$. For $M_3(K)$ power central polynomials exist.

We consider the version for algebras, reputedly raised by Kaplansky, of the possible image set $\text{Im } p$ of a polynomial p on matrices. When $p = x_1x_2 - x_2x_1$, its image consists of all matrices of trace 0, by a theorem of Albert and Muckenhoupt.

Over a finite field K, Kaplansky's question was settled for arbitrary polynomials by Chuang, who proved that a subset $S \subseteq M_n(K)$ containing 0 is the image of a polynomial with constant term zero, if and only if S is invariant under conjugation.

We consider the version for algebras, reputedly raised by Kaplansky, of the possible image set $\text{Im } p$ of a polynomial p on matrices. When $p = x_1x_2 - x_2x_1$, its image consists of all matrices of trace 0. by a theorem of Albert and Muckenhoupt. Over a finite field K, Kaplansky's question was settled for arbitrary polynomials by Chuang, who proved that a subset $S \subseteq M_n(K)$ containing 0 is the image of a polynomial with constant term zero,

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

if and only if S is invariant under conjugation.

A polynomial $p \in K\langle x_1, \ldots, x_m \rangle$ is called multilinear of degree m if it has degree 1 in each variable. Thus, a polynomial is multilinear if it is of the form

$$
p(x_1,\ldots,x_m)=\sum_{\sigma\in S_m}c_{\sigma}x_{\sigma(1)}\cdots x_{\sigma(m)},
$$

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

where S_m is the symmetric group in m letters and $c_{\sigma} \in K$.

At first glance, our question looks rather easy. Over an infinite field, one can ascertain the linear span of the values of multilinear polynomial. The linear span of its values comprise a Lie ideal since

$$
[a, p(a_1, \ldots, a_n)] = p([a, a_1], a_2 \ldots, a_n) + p(a_1, [a, a_2] \ldots, a_n) + \cdots
$$

Herstein characterized Lie ideals of a simple ring R as either being contained in the center or containing the commutator Lie ideal $[R, R]$.

It is more difficult to determine the actual image set Im p, rather than its linear span.

At first glance, our question looks rather easy. Over an infinite field, one can ascertain the linear span of the values of multilinear polynomial. The linear span of its values comprise a Lie ideal since

$$
[a, p(a_1, \ldots, a_n)] = p([a, a_1], a_2 \ldots, a_n) + p(a_1, [a, a_2] \ldots, a_n) + \cdots
$$

Herstein characterized Lie ideals of a simple ring R as either being contained in the center or containing the commutator Lie ideal $[R, R]$.

It is more difficult to determine the actual image set $Im p$, rather than its linear span.

Lvov formulated Kaplansky's question as follows:

Let p be a multilinear polynomial over a field K . Is the set of values of p on the matrix algebra $M_n(K)$ a vector space? An explicit version:

Conjecture: If p is a multilinear polynomial evaluated on the matrix ring $M_n(K)$, then Im p is either $\{0\}$, K, $sl_n(K)$, or $M_n(K)$. Here K is the set of scalar matrices and $sl_n(K)$ is the set of matrices of trace zero.

Lvov formulated Kaplansky's question as follows:

Let p be a multilinear polynomial over a field K . Is the set of values of p on the matrix algebra $M_n(K)$ a vector space? An explicit version:

Conjecture: If p is a multilinear polynomial evaluated on the matrix ring $M_n(K)$, then Im p is either $\{0\}$, K, $sl_n(K)$, or $M_n(K)$. Here K is the set of scalar matrices and $sl_n(K)$ is the set of matrices of trace zero.

• $\{0\}$, let p be any PI, in particular s_{2n} (see Amitsur-Levitzky theorem)

- the set sl_n(K) of matrices of trace 0, let $p(x, y) = [x, y]$
- $M_n(K)$, let $p(x) = x$
- or the set of scalar matrices

• $\{0\}$, let p be any PI, in particular s_{2n} (see Amitsur-Levitzky theorem)

- the set $sl_n(K)$ of matrices of trace 0, let $p(x, y) = [x, y]$
- $M_n(K)$, let $p(x) = x$
- or the set of scalar matrices

• $\{0\}$, let p be any PI, in particular s_{2n} (see Amitsur-Levitzky theorem)

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

• the set $sl_n(K)$ of matrices of trace 0, let $p(x, y) = [x, y]$

•
$$
M_n(K)
$$
, let $p(x) = x$

or the set of scalar matrices

• $\{0\}$, let p be any PI, in particular s_{2n} (see Amitsur-Levitzky theorem)

- the set $sl_n(K)$ of matrices of trace 0, let $p(x, y) = [x, y]$
- $M_n(K)$, let $p(x) = x$
- or the set of scalar matrices

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 .

Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of

degree n^2 .

Thus $c(n) \leq n^2$.

 $c(1) = 1$ and $c(2) = 4$

Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 .

Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 .

Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$

Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

Conjecture (Formanek (1991))

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) < 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

Conjecture (Formanek (1991))

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n)$ ≤ $(n-1)^2 + 4$ for $n \geq 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Problem

What is the smallest possible degree $c(n)$ of a multilinear central polynomial identity in the algebra of $n \times n$ matrices?

Formanek (1972): an example of degree n^2 . Razmyslov (1973): an example of degree $3n^2-2$. Halpin(1983): Uses Razmyslov method to construct an example of degree n^2 . Thus $c(n) \leq n^2$. $c(1) = 1$ and $c(2) = 4$ Drensky, Kasparian (1983): $c(3) \ge 8$ (1985): $c(3) = 8$

Conjecture (Formanek (1991))

 $c(n) = \frac{1}{2}(n^2 + 3n - 2)$

Drensky, Piacentini Cattaneo (1994): $c(4) \leq 13$. Drensky (1995): $c(n) \le (n-1)^2 + 4$ for $n \ge 3$. [Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\}$,
- Im p is the set of scalar matrices, or

 \bullet Im $p \supset sh(K)$

- \bullet {0},
- the set of scalar matrices.
- \bullet sl₂(\mathbb{R}), or

 $\bullet M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

• $Im p = \{0\},\$

• Im p is the set of scalar matrices, or

 \bullet Im $p \supset sh(K)$

- \bullet {0},
- the set of scalar matrices.
- \bullet sl₂(\mathbb{R}), or

 $\bullet M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or

 \bullet Im $p \supset sh(K)$

- \bullet {0},
- the set of scalar matrices.
- $sl_2(\mathbb{R})$, or

 $\bullet M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or
- \bullet Im $p \supseteq sh₂(K)$

- \bullet {0},
- the set of scalar matrices.
- $sl_2(\mathbb{R})$, or

 $\bullet M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or
- Im $p \supseteq sh₂(K)$

Theorem (Malev)

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on 2×2 matrices with real entries. Then Im p is one of the following:

- \bullet {0},
- the set of scalar matrices.
- \bullet sh(\mathbb{R}), or

 \bullet $M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or
- Im $p \supseteq sh₂(K)$

Theorem (Malev)

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on 2×2 matrices with real entries. Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalar matrices.
- \bullet sh(\mathbb{R}), or

 \bullet $M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or
- \bullet Im $p \supseteq sh₂(K)$

Theorem (Malev)

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on 2×2 matrices with real entries. Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalar matrices.

```
\bullet sh(\mathbb{R}), or
```
 $\wedge M_{2}(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or
- \bullet Im $p \supseteq sh₂(K)$

Theorem (Malev)

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on 2×2 matrices with real entries. Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalar matrices.
- \bullet sl₂(\mathbb{R}), or

 \circ $M_2(\mathbb{R})$

If p is a multilinear polynomial evaluated on 2×2 matrices with entries in the arbitrary field K, then Im p satisfies one of the following:

- $Im p = \{0\},\$
- Im p is the set of scalar matrices, or
- \bullet Im $p \supseteq sh₂(K)$

Theorem (Malev)

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on 2×2 matrices with real entries. Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalar matrices.
- $sl_2(\mathbb{R})$, or
- $\bullet M_2(\mathbb{R})$

If p is a homogeneous Lie polynomial evaluated on the matrix ring $M_2(K)$ (where K is an algebraically closed field), then Im p is either {0}, or K (the set of scalar matrices), or the set of all non-nilpotent matrices having trace zero, or $sl_2(K)$, or $M_2(K)$.

Take $h(u_1, \ldots, u_8)$ central on 3 \times 3 matrices. For the 2 \times 2 matrices x_1, \ldots, x_9 we consider the homogeneous Lie polynomial $p(x_1,...,x_9) = h(\mathsf{ad}_{[[[x_1,x_9],x_9],x_9]},\mathsf{ad}_{x_2},\mathsf{ad}_{x_3},\ldots,\mathsf{ad}_{x_8})(x_9).$

Eva $\overline{\Theta}$ in finite dimensions on $\overline{\Xi}$ in finite dimensional algebras.

If p is a homogeneous Lie polynomial evaluated on the matrix ring $M_2(K)$ (where K is an algebraically closed field), then Im p is either {0}, or K (the set of scalar matrices), or the set of all non-nilpotent matrices having trace zero, or $sl_2(K)$, or $M_2(K)$.

Example (Kanel-Belov)

Take $h(u_1, \ldots, u_8)$ central on 3×3 matrices. For the 2×2 matrices x_1, \ldots, x_9 we consider the homogeneous Lie polynomial $p(x_1, \ldots, x_9) = h(\mathsf{ad}_{[[[x_1,x_9],x_9],x_9]}, \mathsf{ad}_{x_2}, \mathsf{ad}_{x_3}, \ldots, \mathsf{ad}_{x_8})(x_9).$

 $\mathcal{A} \oplus \mathcal{P}$ and $\mathcal{P} \oplus \mathcal{P}$ and $\mathcal{P} \oplus \mathcal{P}$ and $\mathcal{P} \oplus \mathcal{P}$

If p is a homogeneous Lie polynomial evaluated on the matrix ring $M_2(K)$ (where K is an algebraically closed field), then Im p is either ${0}$, or K (the set of scalar matrices), or the set of all non-nilpotent matrices having trace zero, or $sl_2(K)$, or $M_2(K)$.

Example (Kanel-Belov)

Take $h(u_1, \ldots, u_8)$ central on 3 \times 3 matrices. For the 2 \times 2 matrices x_1, \ldots, x_9 we consider the homogeneous Lie polynomial $p(x_1, \ldots, x_9) = h(\mathsf{ad}_{[[[x_1,x_9],x_9],x_9]}, \mathsf{ad}_{x_2}, \mathsf{ad}_{x_3}, \ldots, \mathsf{ad}_{x_8})(x_9).$

If p is a multilinear polynomial evaluated on 3×3 matrices over algebraically closed field then Im p is one of the following:

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

 \bullet {0},

- the set of scalar matrices.
- dense subset of $sl_3(K)$
- a dense subset of $M_3(K)$,
- the set of 3-central matrices, or
- the set of scalars plus 3-central matrices.

If p is a multilinear polynomial evaluated on 3×3 matrices over algebraically closed field then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalar matrices.
- dense subset of $sl_3(K)$
- a dense subset of $M_3(K)$,
- the set of 3-central matrices, or
- the set of scalars plus 3-central matrices.

If p is a multilinear polynomial evaluated on 3×3 matrices over algebraically closed field then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalar matrices.
- dense subset of $sl_3(K)$
- a dense subset of $M_3(K)$,
- the set of 3-central matrices, or
- the set of scalars plus 3-central matrices.

If p is a multilinear polynomial evaluated on 4×4 matrices, over algebraically closed field, neither PI nor central then dim $m p > 14$, equality holding only if any value of p has eigenvalues $(\lambda_1, \lambda_2, -\lambda_1, -\lambda_2).$

If p is a multilinear polynomial evaluated on $n \times n$ matrices, over algebraically closed field, neither PI nor central then dim Im $p \ge n^2 - n + 3$.

If p is a multilinear polynomial evaluated on 4×4 matrices, over algebraically closed field, neither PI nor central then dim $m p > 14$, equality holding only if any value of p has eigenvalues $(\lambda_1, \lambda_2, -\lambda_1, -\lambda_2).$

Theorem (Kanel-Belov,Malev,Rowen)

If p is a multilinear polynomial evaluated on $n \times n$ matrices, over algebraically closed field, neither PI nor central then dim Im $p \ge n^2 - n + 3$.

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on quaternion algebra Then Im p is one of the following:

- \bullet {0},
- the set of scalars,
- the set of vectors, or
- the set of all quaternions.

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on quaternion algebra Then Im p is one of the following:

- $\bullet \ \{0\},\$
- the set of scalars,
- the set of vectors, or
- the set of all quaternions.

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on quaternion algebra Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalars,
- the set of vectors, or
- the set of all quaternions.

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on quaternion algebra Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalars,
- **the set of vectors, or**
- the set of all quaternions.

Let $p(x_1, \ldots, x_m)$ be a multilinear polynomial evaluated on quaternion algebra Then Im p is one of the following:

- \bullet $\{0\},$
- the set of scalars,
- the set of vectors, or
- the set of all quaternions.

If p is a multilinear polynomial evaluated on the Octonion algebra $\mathbb{O},$ then Im p is either $\{0\}$, or $\mathbb{R} \subseteq \mathbb{O}$ (the space of scalar octonions), or $V \subset \mathbb{O}$ – the space of pure octonions, or \mathbb{O} .

We also classify possible images of semi-homogeneous polynomials:

If p is a semihomogeneous non-commutative non-associative polynomial of weighted degree $d \neq 0$ evaluated on the the octonion algebra $\mathbb O$, then Im p is either $\{0\}$, or $\mathbb R$, or $\mathbb R_{\geq 0}$, or $\mathbb R_{\leq 0}$, or V, or some Zariski dense subset of O.

If p is a multilinear polynomial evaluated on the Octonion algebra $\mathbb{O},$ then Im p is either $\{0\}$, or $\mathbb{R} \subseteq \mathbb{O}$ (the space of scalar octonions), or $V \subset \mathbb{O}$ – the space of pure octonions, or \mathbb{O} .

We also classify possible images of semi-homogeneous polynomials:

Theorem (Kanel-Belov,Malev,Pines,Rowen)

If p is a semihomogeneous non-commutative non-associative polynomial of weighted degree $d \neq 0$ evaluated on the the octonion algebra $\mathbb O$, then Im p is either $\{0\}$, or $\mathbb R$, or $\mathbb R_{\geq 0}$, or $\mathbb R_{\leq 0}$, or V, or some Zariski dense subset of O.

Definition

Malcev algebra is is a nonassociative anticommutative algebra that satisfies the Malcev identity:

$$
(xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y.
$$

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

We will consider the Malcev algebra $(V, [\cdot, \cdot])$.

Theorem (Kanel-Belov, Malev, Pines, Rowen)

Let $p(x_1, \ldots, x_m)$ be arbitrary polynomial in m anticommutative variables. Then its evaluation on V can be either $\{0\}$ or V.

Proof.

Theorem (Kanel-Belov, Malev, Pines, Rowen)

Let $p(x_1, \ldots, x_m)$ be arbitrary polynomial in m anticommutative variables. Then its evaluation on V can be either $\{0\}$ or V.

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Proof.

$$
\|p(x_1,\ldots,x_m)\|^2
$$
 is a polynomial in 7*m* variables. It is either

- \bullet 0
- \bullet not θ

 p can be PI of V :

$$
p(x_1, x_2, ..., x_{15}) = s_{14}(ad_{x_1}, ad_{x_2}, ..., ad_{x_{14}})(x_{15}).
$$

Remind: $ad_x(y) = [x, y],$

$$
s_n(x_1, ..., x_n) = \sum_{\sigma \in S_n} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}.
$$

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Definition

A Jordan algebra is a non-associative algebra whose multiplication ◦ satisfies the following axioms:

 \bullet x \circ y = y \circ x (commutativity)

$$
\bullet (x \circ y) \circ (x \circ x) = x \circ (y \circ (x \circ x))
$$
 (Jordan identity).

We define J_n (*n*-dimensional Jordan algebra) as follows:

- the base of J_n is the set $\{e_0 = 1, e_1, \ldots, e_{n-1}\},\$
- the product \circ is defined as $1 \circ x = x \circ 1 = x$ for any x, $e_i \circ e_i = \delta_{ii}$.

Definition

A Jordan algebra is a non-associative algebra whose multiplication ◦ satisfies the following axioms:

 \bullet x \circ y = y \circ x (commutativity)

$$
\bullet (x \circ y) \circ (x \circ x) = x \circ (y \circ (x \circ x))
$$
 (Jordan identity).

Definition

We define J_n (*n*-dimensional Jordan algebra) as follows:

- the base of J_n is the set $\{e_0 = 1, e_1, \ldots, e_{n-1}\},\$
- the product \circ is defined as $1 \circ x = x \circ 1 = x$ for any x, $e_i \circ e_i = \delta_{ii}$.

 \bigcirc J₃: self-adjoint 2 \times 2 real matrices with standard Jordan product $x \circ y = \frac{xy + yx}{2}$ $\frac{+yx}{2}$. Basis: 1 being the identity matrix, $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$), and $e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. \bullet J_4 : self-adjoint 2 \times 2 complex matrices. Basis: $\{e_0=1,e_1,e_2,e_3\},\ e_3=\left(\begin{array}{cc} 0 & i\ i& 0\ \end{array}\right)$ $-i = 0$. \bullet J_6 : self-adjoint 2 \times 2 quaternionic matrices. Basis

$$
\{e_0=1,e_1,\ldots,e_5\},\ e_4=\begin{pmatrix}0&j\\-j&0\end{pmatrix},\ e_5=\begin{pmatrix}0&k\\-k&0\end{pmatrix}.
$$

 \bigcirc J₁₀: self-adjoint 2 \times 2 octonionic matrices. Basis $\{e_0=1,e_1,\ldots,e_9\},\ e_6=\left(\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right)$ $-l$ 0 $\Big), e_7 = \Big(\begin{array}{cc} 0 & i \ i & 0 \end{array} \Big)$ $-il$ 0 , $e_8=\left(\begin{array}{cc} 0 & j_1 \ j_1 & j_2 \end{array}\right)$ −jl 0 $\Big)$, e9 = $\Big(\begin{array}{cc} 0 & k \ k & 0 \end{array} \Big)$ $-kl$ 0 .

 \bigcirc J_3 : self-adjoint 2 \times 2 real matrices with standard Jordan product $x \circ y = \frac{xy + yx}{2}$ $\frac{+yx}{2}$. Basis: 1 being the identity matrix, $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$), and $e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. \bullet J_4 : self-adjoint 2 \times 2 complex matrices. Basis: $\{e_0=1,e_1,e_2,e_3\},\ e_3=\left(\begin{array}{cc} 0 & i\ i& 0\ \end{array}\right)$ $-i$ 0 . \bullet J₆: self-adjoint 2 \times 2 quaternionic matrices. Basis $\{e_0=1,e_1,\ldots,e_5\},\ e_4=\left(\begin{array}{cc} 0 & j\ j\ j \end{array}\right)$ $-j = 0$ $\Big), e_5 = \left(\begin{array}{cc} 0 & k \\ k & 0 \end{array}\right)$ $-k = 0$. \triangle J₁₀: self-adjoint 2 \times 2 octonionic matrices. Basis $\{e_0=1,e_1,\ldots,e_9\},\ e_6=\left(\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right)$ $-l$ 0 $\Big), e_7 = \Big(\begin{array}{cc} 0 & i \ i & 0 \end{array} \Big)$ $-il$ 0 , $e_8=\left(\begin{array}{cc} 0 & j_1 \ j_1 & j_2 \end{array}\right)$ −jl 0 $\Big)$, e9 = $\Big(\begin{array}{cc} 0 & k \ k & 0 \end{array} \Big)$ $-kl$ 0 .

 \bigcirc J_3 : self-adjoint 2 \times 2 real matrices with standard Jordan product $x \circ y = \frac{xy + yx}{2}$ $\frac{+yx}{2}$. Basis: 1 being the identity matrix, $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$), and $e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. \bullet J_4 : self-adjoint 2 \times 2 complex matrices. Basis: $\{e_0=1,e_1,e_2,e_3\},\ e_3=\left(\begin{array}{cc} 0 & i\ i& 0\ \end{array}\right)$ $-i$ 0 . \bullet J₆: self-adjoint 2 \times 2 quaternionic matrices. Basis $\{e_0=1,e_1,\ldots,e_5\},\; e_4=\left(\begin{array}{cc} 0 & j\ j\ j \end{array}\right)$ $-j$ 0), $e_5 = \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}$ $-k$ 0 . \bigoplus J_{10} : self-adjoint 2 \times 2 octonionic matrices. Basis $\{e_0=1,e_1,\ldots,e_9\},\ e_6=\left(\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right)$ $-l$ 0 $\Big), e_7 = \Big(\begin{array}{cc} 0 & i \ i & 0 \end{array} \Big)$ $-il$ 0 , $e_8=\left(\begin{array}{cc} 0 & j_1 \ j_1 & j_2 \end{array}\right)$ −jl 0 $\Big)$, e9 = $\Big(\begin{array}{cc} 0 & k \ k & 0 \end{array} \Big)$ $-kl$ 0 .

 \bigcirc J_3 : self-adjoint 2 \times 2 real matrices with standard Jordan product $x \circ y = \frac{xy + yx}{2}$ $\frac{+yx}{2}$. Basis: 1 being the identity matrix, $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$), and $e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. \bullet J_4 : self-adjoint 2 \times 2 complex matrices. Basis: $\{e_0=1,e_1,e_2,e_3\},\ e_3=\left(\begin{array}{cc} 0 & i\ i& 0\ \end{array}\right)$ $-i$ 0 . \bullet J_6 : self-adjoint 2 \times 2 quaternionic matrices. Basis $\{e_0=1,e_1,\ldots,e_5\},\; e_4=\left(\begin{array}{cc} 0 & j\ j\ j \end{array}\right)$ $-j$ 0), $e_5 = \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}$ $-k$ 0 . \bullet J_{10} : self-adjoint 2 × 2 octonionic matrices. Basis $\{e_0=1,e_1,\ldots,e_9\},\ e_6=\left(\begin{array}{cc} 0 & \mu \ 0 & \mu \end{array} \right)$ −l 0 $\Big), e_7 = \Big(\begin{array}{cc} 0 & i \ i & 0 \end{array} \Big)$ $-i$ l 0 , $e_8=\left(\begin{array}{cc} 0 & j\end{array}\right)$ −jl 0), $e_9 = \begin{pmatrix} 0 & kI \\ kI & 0 \end{pmatrix}$ −kl 0 .

Theorem (Malev, Yavich, Shayer)

Let p be any commutative non-associative polynomial. Then its evaluation on J_n is either $\{0\}$, or $\mathbb R$ (i.e. one-dimensional subspace spanned by the identity element), the space of pure elements V $((n - 1)$ -dimensional vector space $\langle e_1, \ldots, e_{n-1} \rangle)$, or J_n .

1 The associator $p(x, y, z) = (xy)z - x(yz)$. Im $p = V$.

- ² We can construct the example of central polynomial as well: if $p(x, y, z)$ is an associator, then $p(x_1, y_1, z_1) \circ p(x_2, y_2, z_2)$ is central.
- 3 p($p(x_1, y_1, z_1) \circ p(x_2, y_2, z_2)$, y_3, z_3) (where p is associator) is PI.

- **1** The associator $p(x, y, z) = (xy)z - x(yz)$. Im $p = V$.
- ² We can construct the example of central polynomial as well: if $p(x, y, z)$ is an associator, then $p(x_1, y_1, z_1) \circ p(x_2, y_2, z_2)$ is central.
- p($p(p(x_1, y_1, z_1) \circ p(x_2, y_2, z_2), y_3, z_3)$ (where p is associator) is PI.

- **1** The associator $p(x, y, z) = (xy)z - x(yz)$. Im $p = V$.
- ² We can construct the example of central polynomial as well: if $p(x, y, z)$ is an associator, then $p(x_1, y_1, z_1) \circ p(x_2, y_2, z_2)$ is central.
- **③** $p(p(x_1, y_1, z_1) \circ p(x_2, y_2, z_2), y_3, z_3)$ (where p is associator) is PI.

Open problems

Problem

Does there exist a multilinear 3-central polynomial evaluated on $M_3(K)$?

Does there exist a Lie 3-central polynomial evaluated on $M_3(K)$?

What can be the image set of a multilinear polynomial evaluated on $M_3(\mathbb{R})$?

Classify all possible 15-dimensional image sets of a multilinear polynomial evaluated on $M_4(K)$ and 23- and 24-dimensional image sets of a multilinear polynomial evaluated on $M_5(K)$?

Open problems

Problem

Does there exist a multilinear 3-central polynomial evaluated on $M_3(K)$?

Problem

Does there exist a Lie 3-central polynomial evaluated on $M_3(K)$?

What can be the image set of a multilinear polynomial evaluated on $M_3(\mathbb{R})$?

Classify all possible 15-dimensional image sets of a multilinear polynomial evaluated on $M_4(K)$ and 23- and 24-dimensional image sets of a multilinear polynomial evaluated on $M_5(K)$?

Open problems

Problem

Does there exist a multilinear 3-central polynomial evaluated on $M_3(K)$?

Problem

Does there exist a Lie 3-central polynomial evaluated on $M_3(K)$?

Problem

What can be the image set of a multilinear polynomial evaluated on $M_3(\mathbb{R})$?

Classify all possible 15-dimensional image sets of a multilinear polynomial evaluated on $M_4(K)$ and 23- and 24-dimensional image sets of a multilinear polynomial evaluated on $M_5(K)$?

Problem

Does there exist a multilinear 3-central polynomial evaluated on $M_3(K)$?

Problem

Does there exist a Lie 3-central polynomial evaluated on $M_3(K)$?

Problem

What can be the image set of a multilinear polynomial evaluated on $M_3(\mathbb{R})$?

Problem

Classify all possible 15-dimensional image sets of a multilinear polynomial evaluated on $M_4(K)$ and 23- and 24-dimensional image sets of a multilinear polynomial evaluated on $M_5(K)$?

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)

Thank you!

[Evaluations of non-commutative polynomials on finite dimensional algebras.](#page-0-0)