> IVAN PANIN

The Coniecture

On Grothendieck–Serre conjecture concerning principal bundles

IVAN PANIN

CM-2018, August 06, 2018

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> IVAN PANIN

The Conjecture

The conjecture

Let R be a regular local ring. Let G be a reductive group scheme over R. A well-known conjecture due to Grothendieck and Serre assertes that a principal G-bundle over R is trivial, if it is trivial over the fraction field of R.

The conjecture was stated by J.-P.Serre in 1958 in so called constant case and by A.Grothendieck in 1968 in the general case.

The conjecture is solved in positive if R contains a field.

In the first part of the talk we will discuss smooth complex algebraic varieties and some examples to the conjecture in which as the group G, so the principal G-bundle are involved only tacitely (non-explicitly).

> IVAN PANIN

The Conjecture

Some notation

In this introduction we give couple results motivating the conjecture in the constant case. To do that recall some notation.

Let X be an affine complex algebraic variety, smooth and irreducible. Let $\mathbb{C}[X]$ be the ring of regular functions on X and $f \in \mathbb{C}[X]$ be a non-zero function. Let

$$X_f := \{ x \in X : f(x) \neq 0 \}.$$

> IVAN PANIN

The Conjecture This open subset is called the principal open subset of X corresponding to the function f.

This open subset X_f is itself is an affine algebraic variety and its ring of regular functions $\mathbb{C}[X_f]$ is the localization $\mathbb{C}[X]_f$ of the ring $\mathbb{C}[X]$ with respect to the element f.

If A is a $\mathbb{C}[X]$ -algebra, then we write A_f for the localization of A with respect to $f \in \mathbb{C}[X]$.

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <目> <日</p>

> IVAN PANIN

The Conjecture

Serre's theorem (1958)

Let A be a $\mathbb{C}[X]$ -algebra, which is a free finitely generated $\mathbb{C}[X]$ -module of rank n. Suppose that A is isomorphic to the matrix algebra $M_r(\mathbb{C}[X])$ locally for the complex topology on X. Suppose further that for a non-zero function $f \in \mathbb{C}[X]$ the $\mathbb{C}[X_f]$ -algebras

 A_f and $M_r(\mathbb{C}[X_f])$

are isomorphic.

Then for any point $x\in X$ there is a regular function $g\in \mathbb{C}[X]$ such that $g(x)\neq 0$ and

$$A_g \cong M_r(\mathbb{C}[X_g])$$

as the $\mathbb{C}[X_g]\text{-algebras.}$ In the other words, the $\mathbb{C}[X]\text{-algebras}$

A and $M_r(\mathbb{C}[X])$

are isomorphic locally for the Zariski topology on X.

> IVAN PANIN

The Conjecture

Ojanguren's theorem (1982)

Let X and $\mathbb{C}[X]$ be as above and let $a_i, b_i \in \mathbb{C}[X]$ be invertible functions on X, where $i \in \{1, ..., r\}$. Consider two quadratic spaces

$$P:=\Sigma_{i=1}^ra_iT_i^2$$
 and $Q:=\Sigma_{i=1}^rb_iT_i^2$

over $\mathbb{C}[X]$. Suppose for a non-zero function $f \in \mathbb{C}[X]$ these quadratic spaces are isomorphic over the ring $\mathbb{C}[X_f]$. Then the quadratic spaces

P and Q

are isomorphic locally for the Zariski topology on X. In other words, for any point $x \in X$ there is a regular function $g \in \mathbb{C}[X]$ such that $g(x) \neq 0$ and quadratic spaces P and Q are isomorphic as quadratic spaces over $\mathbb{C}[X]_g$.

A comment

Grothendieck-Serre conjecture concerning principal bundles

On

IVAN PANIN

The Conjecture

The indicated results can be restated in terms of principal bundles for groups PGL_r , O_r respectively.

A comment

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Grothendieck– Serre conjecture concerning principal bundles

On

IVAN PANIN

The Conjecture

The indicated results can be restated in terms of principal bundles for groups PGL_r , O_r respectively.

It is pretty clear now that one can try to state a rather general theorem in terms of principal G-bundles. To do that recall the notion of a

PRINCIPAL G-bundle

> IVAN PANIN

The Conjecture Let G be a linear complex algebraic group. Let X be as above.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣��

> IVAN PANIN

The Conjecture Let **G** be a linear complex algebraic group. Let X be as above. Let $(E, \nu : \mathbf{G} \times E \to E)$ be a pair such that E is a complex algebraic variety together with a regular map $p : E \to X$ and ν is a **G**-action on E respecting the map p. Write $g \cdot e$ for $\nu(g, e)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> IVAN PANIN

The Conjecture Let **G** be a linear complex algebraic group. Let X be as above. Let $(E, \nu : \mathbf{G} \times E \to E)$ be a pair such that E is a complex algebraic variety together with a regular map $p : E \to X$ and ν is a **G**-action on E respecting the map p. Write $g \cdot e$ for $\nu(q, e)$.

A principal **G**-bundle over X is a pair $(E, \nu : \mathbf{G} \times E \to E)$ above such that the map $p : E \to X$ is smooth surjective and • the regular map $\mathbf{G} \times E \to E \times_X E$ taking (g, e) to $(g \cdot e, e)$ is an isomorphism of algebraic varieties; In this case there exists a cover $X = \bigcup V_i$ in the complex topology on X and holomorphic isomorphisms $\varphi_i : \mathbf{G} \times V_i \to E|_{V_i} := p^{-1}(V_i)$ respecting as the projections onto V_i so the **G**-actions on both sides.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Рис.:

An isomorphism between principal G-bundles (E_1, ν_1) and (E_2, ν_2) is a morphism $\psi: E_1 \to E_2$ respecting the projections on X, and the G-actions.

> IVAN PANIN

The Conjecture A trivial G-bundle is a G-bundle isomorphic to G-bundle of the form $(\mathbf{G} \times X, \mu)$, where $g' \cdot (g, x) = ((g' \cdot g), x)$. A trivial bundle has a section. If a bundle E has a section s, then it is trivial. Indeed, the map $(g, x) \mapsto g \cdot s(x)$ identifies $\mathbf{G} \times X$ with E.

> IVAN PANIN

The Conjecture Many examples of principal G-bundles are obtained by the following simple construction. Consider a closed embedding of algebraic groups $\mathbf{G} \subset \mathbf{H}$ and set $X = \mathbf{G} \setminus \mathbf{H}$ (the orbit variety of right cosets with respect to G). Then the pair

 $(\mathbf{H}, \nu: \mathbf{G} \times \mathbf{H} \to \mathbf{H}),$

where ν takes (g,h) to $g \cdot h$ is a principal G-bundle over X.

The fibres of the projection $p : \mathbf{H} \to X$ are right cosets of \mathbf{H} with respect to the subgroup \mathbf{G} .

> IVAN PANIN

The Conjecture A principal G-bundle E over X is not necessary trivial locally for the Zariski topology on X. However it is always trivial locally for the étale topology on X. In a picture the latter means the following: here X' is smooth, $\pi: X' \to X$ is surjective and any point $x' \in X'$ one has $T_{X',x'} \cong T_{X,\pi(x')}$.

> IVAN PANIN

The Conjecture A principal G-bundle E over X is not necessary trivial locally for the Zariski topology on X. However it is always trivial locally for the étale topology on X. In a picture the latter means the following: here X' is smooth, $\pi: X' \to X$ is surjective and any point $x' \in X'$ one has $T_{X',x'} \cong T_{X,\pi(x')}$.

> IVAN PANIN

The Conjecture Examples of simple, semi-simple, reductive complex algebraic groups.

A reductive group is connected by an agreement due to Demazure and Grothendieck. SL_n , PGL_n , SO_n , $Spin_n$, PGO_n^+ , Sp_{2n} , PSp_{2n} , G_2 , F_4 , E_6 , E_7 , E_8 , $SL_3 \times E_6$, $Sp_{2n} \times Spin_m$ GL_n and GO_n , GSp_{2n} (the groups of similitudes).

We are ready now to state a very general result concerning principal G-bundles and extending the results from the introduction.

> IVAN PANIN

The Conjecture

Theorem (R.Fedorov, I.Panin; 2013)

Let G be a simple (or a semi-simple, or even a reductive) complex algebraic group. Let X be an affine complex algebraic variety, smooth and irreducible and let E_1 , E_2 be two principal G-bundles over X. Suppose there is a non-zero regular function $f \in \mathbb{C}[X]$ such that the principal G-bundles $E_1|_{X_f}$ and $E_2|_{X_f}$ are isomorphic over X_f .

Then the principal G-bundles E_1 and E_2 are isomorphic locally for the Zariski topology on X.

Remark. Particularly, if E_1 is trivial over a non-empty Zariski open subset of X, then E_1 is trivial locally for the Zariski topology on X.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> IVAN PANIN

The Conjecture Examples illustrating the Theorem.

• Let A_1 and A_2 be two algebras as in the Serre's theorem above. They are called Azumaya $\mathbb{C}[X]$ -algebras. Suppose for a non-zero function $f \in \mathbb{C}[X]$ the $\mathbb{C}[X_f]$ -algebras $(A_1)_f$ and $(A_2)_f$ are isomorphic. Then the $\mathbb{C}[X]$ -algebras A_1 and A_2 are isomorphic locally for the Zariski topology on X.

• Let P and Q be the quadratic spaces over $\mathbb{C}[X]$ as in Ojanguren's theorem. Suppose they are in the same similarity class over the field $\mathbb{C}(X)$, then they are in the same similarity class locally for the Zariski topology on X.

> IVAN PANIN

The Conjecture Non-constant case of the conjecture for complex algebraic varieties.

• Example 1. Let $a, b \in \mathbb{C}[X]^{\times}$. Consider an equation

$$T_1^2 - aT_2^2 = b (1)$$

If this equation has a solution over the field $\mathbb{C}(X)$ then for any point $x \in X$ there is a function $g \in \mathbb{C}[X]$ such that $g(x) \neq 0$ and the equation (1) has a solution in $\mathbb{C}[X_g]$.

• Example 2. Let $a, b, c \in \mathbb{C}[X]^{\times}$. Consider an equation

$$T_1^2 - aT_2^2 - bT_3^2 + abT_4^2 = c$$
⁽²⁾

Suppose this equation has a solution over the field $\mathbb{C}(X)$. Then for any point $x \in X$ there is a function $g \in \mathbb{C}[X]$ such that $g(x) \neq 0$ and the equation (2) has a solution in $\mathbb{C}[X_g]$.

> IVAN PANIN

The Conjecture Reformulate these statements in terms of principal G-bundles for reductive group schemes over our complex algebraic variety X.

Recall for that notion of a reductive group *X*-scheme and a principal G-bundle.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> IVAN PANIN

The Conjecture Let X be as above. A smooth X-group scheme consists of the data $p : \mathbf{G} \to X, \mu : \mathbf{G} \times_X \mathbf{G} \to \mathbf{G}, i : \mathbf{G} \to \mathbf{G}, e : X \to \mathbf{G}$, where p, μ, i, e are regular maps. The requirements are the obvious ones.

• In the example (1) consider an X-group scheme defined by the equation $T_1^2 - aT_2^2 = 1$. Call it T.

• In the example (2) consider an X-group scheme defined by the equation $T_1^2 - aT_2^2 - bT_3^2 + abT_4^2 = 1$. Call it $SL_{1,A}$, where A is the generalized quaternion $\mathbb{C}[X]$ -algebra for the pair a, b. One has $\mathbf{T} \cong \mathbb{C}^{\times} \times X$, $SL_{1,A} \cong SL_2(\mathbb{C}) \times X$, locally for the complex topology on X.

> IVAN PANIN

The Conjecture The following well-known definition shows that the two X-group schemes T and $SL_{1,A}$ are REDUCTIVE X-GROUP SCHEMES.

Being a bit non-precise, an X-group scheme G is called a reductive if for a complex algebraic reductive group G_0

$\mathbf{G}\cong \mathbf{G_0}\times \mathbf{X}$

holomorphically isomorphic locally for the complex topology on X. Recall that G_0 is required to be connected. The class of reductive group schemes contains the class of semi-simple group schemes which in turn contains the class of simple group schemes.

Examples: T, $SL_{1,A}$, PGL_n , $Spin_Q$, G_2 , F_4 , E_6 , E_7 , E_8 .

> IVAN PANIN

The Conjecture Let **G** be a reductive X-group scheme. A principal **G**-bundle over X consists of data $(p: E \to X, \nu : \mathbf{G} \times_X E \to E)$ such that p is a smooth surjective regular map, ν is a **G**-action respecting the projections on X and 1) the regular map $\mathbf{G} \times_X E \to E \times_X E$ taking (g, e) to (ge, e)is an isomorphism of algebraic varieties;

A principal G-bundle E is called trivial if there is an isomorphism $E \to \mathbf{G}$ over X, which respects the obvious left G-action on both sides. E is trivial if and only if there is a section $s: X \to E$ of the projection $p: E \to X$.

The equation (1) above defines a principal T-bundle. The equation (2) above defines a principal $SL_{1,A}$ -bundle.

> IVAN PANIN

The Conjecture

Theorem non-constant case: R.Fedorov,I.Panin;2013

Let G be a complex algebraic reductive X-group scheme and E be a principal G-bundle. Suppose for a non-zero function f the principal G-bundle $E|_{X_f}$ is trivial over X_f . Then E is trivial locally for the Zariski topology on X.

Corollary

Let $\mathbf{H}, \mu : \mathbf{H} \to \mathbb{G}_{m,X}$ and $\lambda \in \mathbb{C}[X]^{\times}$. Suppose the kernel $ker(\mu)$ is a reductive X-group scheme. If the equation $\mu(h) = \lambda$ has a solution over $\mathbb{C}(X)$, then it has a solution locally for the Zariski topology on X.

> IVAN PANIN

The Conjecture

General case of the conjecture

Let $U = \operatorname{Spec}(R)$ be an irreducible regular scheme and \mathbf{G} be a reductive U-group scheme. Recall that a U-scheme E with an action of \mathbf{G} is called a principal \mathbf{G} -bundle over U, if E is smooth and surjective over U and the morphism $\mathbf{G} \times_U E \to E \times_U E$ taking (g, e) to (ge, e) is an isomorphism (see [Gro5, Section 6]).

Conjecture[Serre (1958), Grothendieck (1968)]. Let K be the fraction field of a regular local ring R. If $E(K) \neq \emptyset$, then $E(R) \neq \emptyset$.

Theorem. If R is a regular local ring containing a field, then the above conjecture holds. That is $[E(K) \neq \emptyset \Rightarrow E(R) \neq \emptyset]$.

> IVAN PANIN

The Conjecture This theorem is proved by R.Fedorov and the author in [FP, 2013] in the case, when R contains an infinite field. It is proved by the author in [Pan, 2015], when R contains a finite field.

Corollary. Let R be a regular local ring, K be its field of fractions, $U = \operatorname{Spec}(R)$. Let $\mu : \mathbf{H} \to \mathbb{G}_{m,U}$ be a smooth U-group morphism, where \mathbf{H} is a reductive U-group scheme. Suppose the kernel $ker(\mu)$ is a reductive U-group scheme. Then the inclusion of R into K induces an injection

 $R^{\times}/\mu(\mathbf{H}(R)) \hookrightarrow K^{\times}/\mu(\mathbf{H}(K)).$

> IVAN PANIN

The Conjecture

History of the topic

History of the topic. — In his 1958 paper Jean-Pierre Serre asked whether a principal bundle is Zariski locally trivial, once it has a rational section (see [Ser, Remarque, p. 31]). In his setup the group is any algebraic group over an algebraically closed field. He gave an affirmative answer to the question when the group is PGL(n) (see [Ser, Prop. 18]) and when the group is an abelian variety (see [Ser, Lemme 4]). In the same year, Alexander Grothendieck asked a similar question (see[Gro1, Remargue 3, pp. 26–27]). A few years later, Grothendieck conjectured that the statement is true for any semi-simple group scheme over any regular local scheme (see[Gro 4, Remarque 1.11.a]). Now by the Grothendieck-Serre conjecture we mean Conjecture 1 though this may be slightly inaccurate from historical perspective. Many results corroborating the conjecture are known.

> IVAN PANIN

The Conjecture Here is a list of known results in the same vein, corroborating the Grothendieck-Serre conjecture.

• The case when the group is PGL_n and the base field is algebraically closed is done by J.-P.Serre in 1958

• The case when the group scheme is PGL_n and the ring R is an arbitrary regular local ring is done by A.Grothendieck in 1968

• The case when the local ring R contains a field of characteristic not 2 the group is SO_n over the ground field is done by M.Ojanguren in 1982

• The case of an arbitrary reductive group scheme over a discrete valuation ring or over a henselian ring is solved by Y. Nisnevich in 1984

• The case, where G is an arbitrary torus over a regular local ring, was settled by J.-L. Colliot-Thélène and J.-J. Sansuc in 1987

> IVAN PANIN

The Conjecture • The case, when G is quasi-split reductive group scheme over arbitrary two-dimensional local rings, is solved by Y. Nisnevich in 1989

The case, where the group scheme G comes from an infinite perfect ground field, solved by J.-L. Colliot-Thélène,
M. Ojanguren in 1992 As far as we know this work was inspired by the one [Oj1,1982].

 \bullet The case, where the group scheme ${\bf G}$ comes from an arbitrary infinite ground field, solved by M. S. Raghunatan 1994

• O. Gabber announced in 1994 a proof for group schemes coming from arbitrary ground fields (including finite fields).

> IVAN PANIN

The Conjecture • For the group scheme $SL_{1,A}$, where A is an Azumaya R-algebra and R contains a field the conjecture is solved by A.Suslin and the author in 1998

• For the unitary group scheme $U_{A,\sigma}^{\epsilon}$, where (A,σ) is an Azumaya R-algebra with involution R contains a field of characteristic not 2 the conjecture is solved by M.Ojanguren and the author in 2001

• For the special unitary group scheme SU_{A, σ}, where (A, σ) is an Azumaya *R*-algebra with a unitary involution and *R* contains a field of characteristic not 2 the conjecture is solved by K. Zainoulline in 2001

• For the spinor group scheme ${\rm Spin}_Q$ of a quadratic space Q over R containing a field of characteristic not 2 the conjecture is solved M. Ojanguren, K. Zainoulline and the author in 2004

> IVAN PANIN

The Conjecture • Under an isotropy condition on G the conjecture is proved by A.Stavrova, N.Vavilov and the author in a series of preprints in 2009, published as papers in 2015 and in 2016

• The case of strongly inner simple adjoint group schemes of the types E_6 and E_7 is done by the second author, V. Petrov, A. Stavrova and the second author in 2009. No isotropy condition is imposed there.

• The case, when G is of the type F₄ with trivial f_3 -invariant and the field is infinite and perfect, is settled by V. Petrov and A. Stavrova in 2009

• The case, when **G** is of the type F₄ with trivial g₃-invariant and the field is of characteristic zero, is settled by V. Chernousov in 2010

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> IVAN PANIN

The Conjecture • The conjecture is solved when R contains an infinite field, by R.Fedorov and the author in a preprint in 2013 and published in 2015.

• The conjecture is solved by the author in the case, when R contains a finite field in 2015 (for a better structured proof see [Pan3,2017]).

So, the conjecture is solved in the case, when ${\cal R}$ contains a field.

The case of mixed characteristic is widely open. Let us indicate two recent interesing preprints [F1] and [PS3]. In [F1] the conjecture is solved for a large class of regular local rings of mixed characteristic assuming that **G** splits. In [PS3] the conjecture is solved for any semi-local Dedekind domain providing that **G** is simple simply-connected and **G** contains a torus $\mathbb{G}_{m,R}$.

> IVAN PANIN

The Conjecture A sketch of the proof in the constant simply connected case assuming the base field is \mathbb{C} . Suppose a principal G-bundle E over X is trivial over X_f . Then there exists a principal G-bundle over $\mathbb{C} \times U$ as on the picture. One has isomorphisms $\mathbf{G} \times U \cong E_t|_{1 \times U} \cong E_t|_{0 \times U} = E|_U$.

$$\begin{array}{c|c} (\times V & E_{1} / (\mathbb{C} \times U) \text{ and monic } h \in O[t]: \\ & X_{2} \\ \hline & 1) & E_{2} | (\mathbb{C} \times U)_{h} \\ \hline & 1 \times U = (\mathbb{C} \times U)_{h} \\ 2) & 1 \times U = (\mathbb{C} \times U)_{h} \\ \hline & 2) & 1 \times U = (\mathbb{C} \times U)_{h} \\ \hline & 3) & E_{1} |_{0 \times U} = E|_{U} \\ h = 0 \\ \hline & Show & that (11 - (3)) \\ \hline & U = Spec(0, 1) \\ & Sumpty connected case \\ & sumpty connected case \\ & u \in U = Spec(0, 1) \\ \end{array}$$