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Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. ⊘ := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a ⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .
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Historical sources of the tropical algebra
Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and
multiplication:
a,b → t · log(exp(a/t) + exp(b/t)), limt→0 = max{a,b}
a,b → t · log(exp(a/t) · exp(b/t)) = a + b
Thus, the ”dequantization” of the logarithmic scaling is a tropical
semi-ring

Solving systems of polynomial equations in Puiseux series
(algebraic geometry)
The field of Puiseux series
F ((t1/∞)) ∋ a0 · t i/q + a1 · t(i+1)/q + · · · , 0 < q ∈ Z over an
algebraically closed field F is algebraically closed. In the (Newton)
algorithm for solving a system of polynomial equations
fi(X1, . . . ,Xn) = 0, 1 ≤ i ≤ k with fi ∈ F ((t1/∞))[X1, . . . ,Xn] in Puiseux
series the leading exponents ij/qj in Xj = a0j · t ij/qj + · · · satisfy a
tropical polynomial system (due to cancelation of the leading terms).
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Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths of length k
between i and j . This is equivalent to computing the tropical k -th
power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine can’t
execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.
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Some other applications of tropical algebra
Neural networks. Gates of mainly used neural networks are tropical
polynomials.

The implementation of auctions of Bank of England is based on
tropical curves.

Tropical cryptography involves tropical semirings as platforms (rather
than more customary groups).
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Tropical linear algebra
If T is an ordered semi-group then tropical linear function over T can
be written as min1≤i≤n{ai + xi}.

Tropical linear system

min
1≤j≤n

{ai,j + xj}, 1 ≤ i ≤ m

(or (m × n)-matrix A = (ai,j)) has a tropical solution x = (x1 . . . , xn) if
for every row 1 ≤ i ≤ m there are two columns 1 ≤ k < l ≤ n such that

ai,k + xk = ai,l + xl = min
1≤j≤n

{ai,j + xj}

Coefficients ai,j ∈ Z∞ := Z ∪ {∞}. Not all xj = ∞. For ai,j ∈ Z we
assume 0 ≤ ai,j ≤ M.

n × n matrix (ai,j) is tropically non-singular if
minπ∈Sn{a1,π(1) + · · ·+ an,π(n)} is attained for a unique permutation π
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Complexity of solving tropical linear systems
Theorem
One can solve an m × n tropical linear system A within complexity
polynomial in n,m,M. (Akian-Gaubert-Guterman; G.)
Moreover, the algorithm either finds a solution over Z∞ or produces an
n × n tropically nonsingular submatrix of A.

Corollary
The problem of solvability of tropical linear systems is in the complexity
class NP ∩ coNP.

Remark
• My algorithm has also a complexity bound polynomial in 2nm, logM
(as well as an obvious algorithm which invokes linear programming);
• Davydov: an example of A with M ≍ 2n ≍ 2m for which my algorithm
runs with exponential complexity Ω(M);
• Podol’ski: an example of A with m = 2, n = 3 for which the algorithm
of Akian-Gaubert-Guterman runs with exponential complexity Ω(M).
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Tropical and Kapranov ranks
Tropical rank trk(A) of matrix A is the maximal size of its tropically
nonsingular square submatrices.
A lifting of A is a matrix F = (fi,j) over the field of Newton-Puiseux
series K = R((t1/∞)) for a field R such that the order ordt(fi,j) = ai,j
where fi,j = b1 · tq1 + b2 · tq2 + · · · with rational exponents
ai,j = q1 < q2 < · · · having common denominator, or fi,j = 0 when
ai,j = ∞.
Kapranov rank KrkR(A) = minimum of ranks (over K ) of liftings of A.
trk(A) ≤ KrkR(A) and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks
• For n × n matrix B testing trk(B) = n (⇔ B is tropically nonsingular)
has polynomial complexity (Butkovic-Hevery);
• trk(A) = r is NP-hard, trk(A) ≥ r is NP-complete (Kim-Roush);
• Solvability of polynomial equations over R is reducible to
KrkR(A) = 3 (Kim-Roush).
Example R = Q or R = GF [p](t).
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Barvinok rank
Brk(A) is the minimal q such that A = (u1 ⊗ v1)⊕ · · · ⊕ (uq ⊗ vq) for
suitable vectors u1, . . . , vq over T

KrkR(A) ≤ Brk(A) and the equality is not always true
(Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)
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Solvability of a tropical linear system and rank(s)
The theorem on complexity of solving tropical linear systems implies

Corollary
The following statements are equivalent

1) a tropical linear system with m × n matrix A has a solution;

2) trk(A) < n;

3) KrkR(A) < n.

Remark
• The corollary holds for matrices over R∞.

• For matrices A with finite coefficients from R it was proved by
Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.

Open question. Are tropical linear systems solvable within polynomial
(in n,m, logM) complexity (i. e. in the complexity class P)?
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Open question. Are tropical linear systems solvable within polynomial
(in n,m, logM) complexity (i. e. in the complexity class P)?
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Tropical polynomial algebra

Theorem
Solvability of tropical polynomial systems is NP-complete (Theobald)

How to reduce tropical polynomial systems to tropical linear ones?
In the classical algebra for this aim serves Nullstellensatz.
In the tropical world the direct version of Nullstellensatz is false even
for linear univariate polynomials: X ⊕ 0, X ⊕ 1 do not have a tropical
solution, while their (tropical) ideal does not contain 0 or any other
monomial (tropical monomials are the only polynomials without tropical
zeroes).
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”Dual” (classical) Nullstellensatz
For polynomials g1, . . . ,gk ∈ C[X1, . . . ,Xn] consider an infinite
Macaulay matrix C with the columns indexed by monomials X I and the
rows by shifts X J · gi with their coefficients being entries of C.
Nullstellensatz: system g1 = · · · = gk = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix CN of C
(generated by a set of rows X J · gi , 1 ≤ i ≤ k of C with degrees of
monomials |J| ≤ N) equals vector (1,0, . . . ,0).
Effective Nullstellensatz: N ≤ (max1≤i≤k{deg(gi)})O(n).
(Galligo, Heintz, Giusti; Kollar)
Dual Nullstellensatz: g1 = · · · = gk = 0 has a solution iff for any finite
submatrix CN of C linear system CN · (y0, . . . , yL) = 0 has a solution
with y0 ̸= 0.
Infinite dual Nullstellensatz: g1 = · · · = gk = 0 has a solution iff
infinite linear system C · (y0, . . . ) = 0 has a solution with y0 ̸= 0.

Nullstellensatz deals with ideal ⟨g1, . . . ,gk ⟩, while dual Nullstellensatz
forgets the ideal, therefore, gives a hope to hold in the tropical setting
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Classical homogeneous (projective) effective
Nullstellensatz
Let g0, . . . ,gk ∈ C[X0, . . . ,Xn] be homogeneous polynomials with
deg(g0) ≥ deg(g1) ≥ · · · .

Theorem
System g0 = · · · = gk = 0 has a solution in the projective space iff the
ideal generated by g0, . . . ,gk does not contain the power (X0, . . . ,Xn)

N0

of the coordinate ideal for N0 = deg(g0) + · · ·+ deg(gn)− n. (Lazard)

In the dual form this means that system g0 = · · · = gk = 0 has a
solution in the projective space iff the homogeneous linear system with
submatrix C(hom)

N0
of the Macaulay matrix C generated by the columns

with the degrees of monomials equal N0, has a non-zero solution.

Thus, the bound on the degrees of monomials in the Macaulay matrix
in the affine Nullstellensatz is roughly the product of the degrees
(Bezout number) of the polynomials in the system, while the bound in
the projective Nullstellensatz is roughly the sum of the degrees.
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Tropical dual effective Nullstellensatz: finite case
Assume w.l.o.g. that for tropical polynomials h =

⊕
J(aJ ⊗ X⊗J) in n

variables which we consider, function J → aJ is concave on Rn. This
assumption does not change tropical prevarieties, the results hold
without it, but it makes the geometric intuition more transparent.
For tropical polynomials h1, . . . ,hk consider (infinite) Macaulay matrix
H with the rows indexed by X⊗I ⊗ hi for I ∈ Zn, 1 ≤ i ≤ k .

Theorem
Tropical polynomials h1, . . . ,hk have a solution over R iff tropical linear
system HN ⊗ (z0, . . . , zL) has a solution over R where HN is (finite)
submatrix of H generated by its rows X⊗I ⊗ hi , 1 ≤ i ≤ k for
|I| ≤ N = (n + 2) · (trdeg(h1) + · · ·+ trdeg(hk )). (G.-Podolskii)

Conjecture is that the latter bound is O(trdeg(h1) + · · ·+ trdeg(hk )).
In case k = 2,n = 1 the bound trdeg(h1) + trdeg(h2) was proved by
Tabera using the classical resultant and Kapranov’s theorem: for a
polynomial f ∈ R((t1/∞))[x1, . . . , xn] it holds:
Prevariety(Trop(f )) = Trop(Variety(f ))
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Prevariety(Trop(f )) = Trop(Variety(f ))
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(Convex)-geometrical rephrasing of the tropical
dual Nullstellensatz over R (finite case)
For a tropical polynomial h =

⊕
J(aJ ⊗ X⊗J) consider its extended

Newton polyhedron G being the convex hull of the graph
{(J,a) : a ≤ −aJ} ⊂ Rn+1. As vertices of G consider all the points of
the form (I, c), I ∈ Zn on the boundary of G. Let Gi correspond to
hi , 1 ≤ i ≤ k . Denote by G(I) := G + (I,0) a horizontal shift of G.
Solution Y := {(J, yJ)} ⊂ Zn ×R of a tropical linear system H ⊗Y treat
also as a graph on Zn.

The tropical dual (infinite) Nullstellensatz over R is equivalent to the
following.

For any I, i take the maximal b := bI,i such that a vertical shift
G(I)

i + (0,b) ≤ Y (pointwise as graphs on Zn).
Assume that G(I)

i + (0,b) has at least two common points with Y .
Then there is a hyperplane in Rn+1 (not containing the vertical line)
which supports (after a parallel shift) each Gi , 1 ≤ i ≤ k at least at two
points.
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Tropical dual effective Nullstellensatz over R∞

Theorem
A system of tropical polynomials h1, . . . ,hk has a zero over R∞ iff the
tropical non-homogeneous linear system with a finite submatrix HN of
the Macaulay matrix H generated by its rows X⊗I ⊗ hi , 1 ≤ i ≤ k has a
tropical solution over R∞ where tropical degrees
|I| < N = O(kn2(2max1≤j≤k{trdeg(hj)})O(min{n,k})) (G.-Podolskii)

Thus, the following table of bounds for effective Nullstellensätze
demonstrates a similarity of tropical geometry with the complex one

Classical Projective Affine
Tropical Finite (R) Infinite (R∞)
Bound Sum of degrees Product of degrees

What is the reason of this analogy between projective vs. affine and
finite vs. infinite?
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Tropical Varieties and Prevarieties
K = C((t1/∞)) = {c = c0t i0/q + c1t(i0+1)/q + · · · }

is a field of Puiseux series where i0 ∈ Z, 1 ≤ q ∈ Z.

Consider an ideal I ⊂ K [X1, . . . ,Xn], the variety of its solutions
U(I) ⊂ K n.

Tropicalization Trop(c) = i0/q, Trop(0) = ∞.

The closure in the Euclidean topology V := Trop(U(I)) ⊂ Rn is called
the tropical variety of I.

Trop(U(f )) ⊂ Rn is a tropical hypersurface where f ∈ K [X1, . . . ,Xn].

V (f1, . . . , fk ) := Trop(U(f1))∩ · · · ∩ Trop(U(fk )) is a tropical prevariety.
Any tropical variety is a tropical prevariety (Speyer-Sturmfels), but not
necessary vice versa.

Any tropical prevariety is a polyhedral complex. Moreover, when ideal I
is prime the tropical variety Trop(U(I)) has at any point the same local
dimension equal dimI (Bergman).
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U(I) ⊂ K n.

Tropicalization Trop(c) = i0/q, Trop(0) = ∞.

The closure in the Euclidean topology V := Trop(U(I)) ⊂ Rn is called
the tropical variety of I.

Trop(U(f )) ⊂ Rn is a tropical hypersurface where f ∈ K [X1, . . . ,Xn].

V (f1, . . . , fk ) := Trop(U(f1))∩ · · · ∩ Trop(U(fk )) is a tropical prevariety.
Any tropical variety is a tropical prevariety (Speyer-Sturmfels), but not
necessary vice versa.

Any tropical prevariety is a polyhedral complex. Moreover, when ideal I
is prime the tropical variety Trop(U(I)) has at any point the same local
dimension equal dimI (Bergman).
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Bounds on Betti numbers of a tropical prevariety
via the volume of Minkowski sum of Newton
polytopes
Denote by PI ⊂ Rn Newton polytope of fi , 1 ≤ i ≤ k .

Theorem
The number of faces of all dimensions of a tropical prevariety
V = V (f1, . . . , fk ) does not exceed
(2n+1 − 1) · n! · Voln(P1 + · · ·+ Pk ).

Theorem
(Weak inequality of discrete Morse theory, R. Forman). l-th Betti
number (the rank of l-th homology group) of V is less or equal to the
number of l-dimensional faces of V .

Corollary
The sum of Betti numbers of V does not exceed
(2n+1 − 1) · n! · Voln(P1 + · · ·+ Pk ).
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Tropical analog of Oleinik-Petrovsky-Milnor-Thom
inequality
Corollary
(G. - N. Vorobjov). For trdeg(fi) ≤ d , 1 ≤ i ≤ k the sum of Betti
numbers of V is less than
(2n+1 − 1) · (kd)n.

Compare with classical polynomials
h1, . . . ,hk ∈ R[X1, . . . ,Xn], deg(hi) ≤ d defining a semi-algebraic set
W := {x ∈ Rn : hi(x) ≥ 0, 1 ≤ i ≤ k}.

Theorem
The sum of Betti numbers of W is bounded by (kd)n.

Theorem

(S. Basu) l-th (l ≥ 1) Betti number of W does not exceed
(k+n

n

)
· dn.

Both classical bounds are close to sharp.
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Bound on the number of connected components
of a tropical prevariety

Theorem
(A. Davydow - G.) The number of connected components of V is less
than (

k + 7n
3n

)
· d3n.

This bound is close to sharp.

Question. Does a similar bound hold for Betti numbers?
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Tropical Macaulay matrices

For a tropical polynomial f = min1≤j≤m{aj +
∑

1≤i≤n tj,iXi} its shift

fs1,...,sn := min
1≤j≤m

{aj +
∑

1≤i≤n

(tj,i + si)Xi} ∈ I(f ).

Fix an integer N and introduce Nn variables
{u(k1, . . . , kn) : 0 ≤ k1, . . . , kn < N}. A linearization of fs1,...,sn is a
tropical linear polynomial min1≤j≤m{aj + u(tj,1 + s1, . . . , tj,n + sn)},
provided that 0 ≤ tj,1 + s1, . . . , tj,n + sn < N.
Linearizations appear as the rows of Macaulay matrix of f .
If (x1, . . . , xn) ∈ V (f ) then point

{u(k1, . . . , kn) = k1x1 + · · ·+ knxn : 0 ≤ k1, . . . , kn < N} ∈ RNn

is a tropical zero of any linearization fs1,...,sn
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Entropy of a tropical polynomial/ideal
Denote by UN ⊂ RNn

the tropical linear prevariety of all the points
being tropical zeroes of all the linearizations fs1,...,sn . A tropical Hilbert
function of f is TN(f ) := dim(UN).
There exists the limit

H := H(f ) := lim
N→∞

dim(UN)/Nn

which we call the (tropical) entropy of f . Clearly, 0 ≤ H ≤ 1.
One can literally generalize the entropy H(I) to semiring ideals I.

Relation to Hilbert polynomial
The tropical prevariety UN plays a role similar to the quotient ring
F [X1, . . . ,Xn]/(g) with respect to the filtration degree N in classical
algebra.
Therefore, the entropy H plays a role of the coefficient at n-th power
Z n of Hilbert polynomial of a polynomial g. This coefficient always
vanishes in classical algebra (the degree of Hilbert polynomial equals
n − 1). It is not the case in the tropical setting: H can be positive.
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Tropical entropy of a univariate polynomial

Example
i) For a tropical polynomial f = min{2X , 1 + X , 0} its entropy
H(f ) = 1/4;
ii) for a tropical polynomial f = min{sX , (s − 1)X , . . . ,X , 0} its entropy
H(f ) = 1 − 2/(s + 1).

Sharp bounds on the entropy.

Theorem
(N. Elizarov).
i) If H(f ) > 0 then H(f ) ≥ 1/4;
ii) If f is a tropical univariate polynomial of degree s then
H(f ) ≤ 1 − 2/(s + 1).
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Newton polygon of a tropical univariate polynomial

For a tropical polynomial f = min0≤k≤s{ak + kX} its Newton polygon
P(f ) ⊂ R2 is the convex hull of the vertical rays
{(k , y) : y ≥ ak}, 0 ≤ k ≤ s.

Theorem
The entropy H(f ) = 0 iff all the points (k , ak ), ak < ∞, 0 ≤ k ≤ s are
the vertices of Newton polygon P(f ), and the indices k such that
ak < ∞ form an arthmetic progression.
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Tropical Hilbert function for univariate polynomials
For a tropical polynomial f = min0≤k≤s{ak + kX} with finite coefficients
0 ≤ ak ≤ m, 0 ≤ k ≤ s consider a tropical linear prevariety
UN(f ) ⊂ RN of the points (u1, . . . ,uN) such that for each 1 ≤ j ≤ N − s
the minimum in

min
0≤k≤s

{uj+k + ak}

is attained at least twice. The tropical Hilbert function
TN(f ) = dim(UN(f )).

Theorem
TN(f ) is the sum of the linear function H(f ) · N and a periodic function
with an integer period (for N > (ms)O(s)). The period does not exceed
exp((ms)O(s)). In addition, the entropy H(f ) is a rational number.

Example
i) For a tropical polynomial f = min{2X , 1 + X , 0} we have
TN(f ) = ⌊N/4⌋;
ii) For a tropical polynomial f = min{2X , X , 0} we have TN(f ) = ⌊N/3⌋.
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Radical of a tropical prevariety
For a tropical prevariety V ⊂ Rn its radical rad(V ) is the semiring ideal
of all the tropical polynomials for which points of V are tropical zeroes.
For a semiring ideal I its radical is rad(V (I)).
Conjecture. For any semiring ideal I it holds H(rad(I)) = 0.
Strong conjecture. For a semiring ideal I of tropical polynomials in n
variables its tropical Hilbert function TN(rad(I)) is a polynomial of
degree at most n − 1 (for sufficiently large N).

Theorem
• If V consists of a finite number of points then H(rad(V )) = 0;
• the strong conjecture holds for univariate polynomials;
• if f = min1≤j≤r{tj,1X + tj,2Y} is a tropical polynomial in 2 variables
then H(rad(f )) = 0.

Example
Consider a tropical quadratic polynomial f = min{0, X , Y , X + Y}.
Then H(f ) ≥ 1/2.
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