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Enumerating ramified coverings of the sphere

In the COMPLEX CASE, one fixes m points in CP1, and ramification
profile over each point. The Hurwitz problem consists in enumerating
ramified coverings of the sphere having the specified ramification profile
over each of the prescribed points.

In the REAL CASE, one requires in addition that the configuration of the
ramification points is symmetric with respect to the complex conjugation,
taking ramification profiles into account. The real Hurwitz problem
consists in enumerating real ramified coverings of the sphere having the
specified ramification profile over each of the prescribed points.
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Complex case

The number of ramified coverings (“complex Hurwitz number”) is
independent of the precise positions of the ramification points;

complex Hurwitz numbers enumerate decompositions of a given
permutation into a product of given number of permutations of
prescribed cyclic types; in other words, they are connection
coefficients in the centers ZC[Sd ] of the group algebras of symmetric
groups:

hλ1,...,λm =
1

d!
#{(σ1, . . . , σm)|σ1◦· · ·◦σm = id, σ1 ∈ Cλ1 , . . . , σm ∈ Cλm}.

Here λ1, . . . , λm are partitions of d , the degree of the covering; such
a partition determines a cyclic type of permutations.
In the center ZC[Sd ] of the group algebra of S(d), we have

hλ1,...,λm = [C1d ]Cλ1Cλ2 . . .Cλm .
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Complex case

of special interest are simple Hurwitz numbers (those enumerating
coverings with at most one degenerate branch point, all λi but one
are of the form 1d−221);

for polynomials of degree n, this number is nn−1, (this result is known
as the Cayley formula) the exponential generating function being the
Lambert function

L(q) =
∞∑
n=1

nn−1 q
n

n!
; q = L(q)e−L(q);
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Generating functions for Hurwitz numbers

Define exponential generating functions in a variable u (recording the
number of transpositions) and infinitely many variables p1, p2, . . .
(recording the parts of the partitions):

H◦(u; p1, p2, . . . ) =
∞∑

m=0

∑
µ

h◦m;µpµ1pµ2 . . .
um

m!
;

and

H(u; p1, p2, . . . ) =
∞∑

m=0

∑
µ

hm;µpµ1pµ2 . . .
um

m!
.

Here µ = (µ1, µ2, . . . ), µ1 ≥ µ2 ≥ . . . runs over all partitions.

The two are related by
H◦ = exp(H).
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Series expansion for Hurwitz numbers

It is clear from the definition that the coefficients of both H and H◦ are
rational. The first terms of the power series expansions are

H◦(u; p1, . . . ) = 1 + p1 +
p2u
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Complex case

the generating function H◦(u; p1, p2, . . . ) for simple complex Hurwitz
numbers satisfies the so-called cut-&-join equation (I. Goulden and
D. Jackson, 1996)

∂H◦

∂u
=

∞∑
i ,j=1

(
ijpi+j

∂2H◦

∂pi∂pj
+ (i + j)pipj

∂H◦

∂pi+j

)
.

This equation demonstrates how does the cyclic type of a
permutation change under multiplication by a transposition.

Schur polynomials are the eigenvectors of the cut-&-join differential
operator on the right, and the corresponding eigenvalues are known
rational numbers;
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Complex case

the generating function H◦(u; p1, p2, . . . ) is a τ -function of the
Kadomtsev–Petviashvili integrable hierarchy of partial differential
equations (Okounkov, 2002), in particular:

∂2H

∂p22
=

∂2H

∂p1∂p3
− 1

2

(
∂2H

∂p21

)2

− 1

12

∂4H

∂p41
;

simple complex Hurwitz numbers are related to the geometry of
moduli spaces of algebraic curves through the ELSV-formula (1999).
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Real case

The number of real ramified coverings (“real Hurwitz number”)
depends on the order of the real ramification points;

real Hurwitz numbers are connection coefficients in certain algebras of
transitions. These algebras have several versions. Below, we consider
the framed case, corresponding to separating real curves.

Definition

A state is a splitting of a finite set D = D+ ⊔ D− into a disjoint union of
one- and two-element subsets such that each two-element subset contains
an element from D+ and an element from D−. A transition is an ordered
pair of states.
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Real case
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Figure: (a) A transition on a set D = D+ ⊔D−, |D+| = d+ = 4, |D−| = d− = 3.
(b) The adjacent transition.
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Real case
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Figure: A nonzero product of two transitions
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Algebras of transitions

Definition

Let Td+,d− denote the algebra of transitions spanned by all transitions on
a given set D = D+

⊔
D−, |D±| = d±, endowed with the composition

product. Let Ad+,d− = T
S(d+)×S(d−)
d+,d− denote the S(d+)× S(d−)-invariant

part of Td+,d− .

The algebra Td+,d− serves as an analogue of the group algebra C[S(d)],
and its subalgebra Ad+,d− is an analogue of the center ZC[S(d)]. In
contrast to the latter, it is noncommutative, just associative.
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Real case

the exponential generating function for numbers enumerating
polynomials has the form

tg(q) +
1

cos(q)
.

S. Lando (HSE University, Skoltech) Algebras of permutations AGFR–2022 13 / 23



Real case

the exponential generating function for numbers enumerating
polynomials has the form

tg(q) +
1

cos(q)
.

S. Lando (HSE University, Skoltech) Algebras of permutations AGFR–2022 13 / 23



Simple framed real Hurwitz numbers

(M. Kazarian, S. L., S. Natanzon, 2021)
The generating function for simple framed real Hurwitz numbers (those
with at most one degenerate branch point)

HR(u; p+1 , p
+
2 , . . . ; p

−
1 , p

−
2 , . . . ; q1, q2, . . . )

satisfies the cut-&-join equation

∂HR

∂u
= W+(HR),

where the linear partial differential operator W+ is defined as follows:

W+ =
∞∑

i ,j=1

(
p īi p

+
j

∂

∂p īi+j

+ p īi+j

∂2

∂p īi∂p
+
j

)
+

∞∑
i=1

(
ip+2i

∂

∂qi
+ qi

∂

∂p+2i

)
,

where ī , for a positive integer i , denotes the sign +, provided i is even,
and the sign − otherwise.
S. Lando (HSE University, Skoltech) Algebras of permutations AGFR–2022 14 / 23



Comparing complex and real cases

The cut-&-join operator W in the complex case (which is, essentially the
Calogero–Moser operator) splits into a direct sum of homogeneous finite
dimensional linear operators. Each of these operators is diagonalized in the
basis of Schur polynomials, with known rational eigenvalues.

The cut-&-join operator W+ in the real case splits into a direct sum of
homogeneous finite dimensional linear operators. These operators are
diagonalizable, but in contrast to the complex case the eigenvalues are not
rational. There is an efficient recurrence for computing these operators
(Krasilnikov, 2022).
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Polynomial real Hurwitz numbers

In the polynomial case (ramified coverings of CP1 by CP1 having a point
with a single preimage), with all real critical values, I. Itenberg and
D. Zvonkine (2018) managed to assign a sign (either + or −) to each
polynomial so that the algebraic number of polynomial coverings counted
with this sign becomes independent of the order of the critical values.

The sign is defined as the product of the signs of critical values, while the
sign of a critical value t is the number of disorders in the degrees of the
preimages of t. A disorder is a pair of preimages such that the degree of a
smaller preimage is greater than that of a larger one.
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Generating functions for complex Hurwitz numbers

Fix a tuple Λ = (λ1, . . . , λk) of partitions and denote by HΛ(q) the
exponential generating function enumerating ramified coverings of the
sphere having k points of degenerate ramification with profiles λ1, . . . , λk ,
and m additional points of simple ramification. Then

HΛ(q) = PΛ(q, L(q), L
′(q)),

for some polynomial PΛ in three variable.
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Polynomial real Hurwitz numbers

Fix a tuple Λ = (λ1, . . . , λk) of partitions and denote by SΛ(q) the
exponential generating function enumerating real polynomial ramified
coverings of the sphere having k points of degenerate ramification with
profiles λ1, . . . , λk , and m additional points of simple ramification, counted
with signs. Then

SΛ(q) = PΛ(q, tg(q)) +
1

cos(q)
QΛ(q, tg(q)),

for some polynomials PΛ and QΛ in two variables.

Problem. How can one extend the notion of a real covering to
meromorphic functions on real algebraic curves that are more general than
polynomial?
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Algebras of permutations in theory of finite type knot
invariants

The theory of finite type knot invariants associates to a knot invariant of
order at most n a function on chord diagrams with n chords. Such a
function can be considered as a function on arc diagrams that is invariant
with respect to cyclic shifts. In turn, an arc diagram is a permutation of
special kind, an involution without fixed point.
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Algebras of permutations in theory of finite type knot
invariants

One of the main problems in the study of weight systems is developing
ways of efficient computations. This is, in particular, an essential step in
understanding weight systems associated to Lie algebras (quantum knot
invariants). A recent idea of Kazarian provides such a tool for the series of
Lie algebras gl(N), N = 1, 2, 3, . . . . It consists in extending the
gl(N)-weight systems to arbitrary permutations, not necessarily involutions
without fixed points. It happens that one can get recurrence relations
expressing the value of the gl(N) weight system on a permutation in terms
of its values in simpler permutations.
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Algebras of permutations in theory of finite type knot
invariants

The extended gl(N) weight systems are invariant with respect to cyclic
shifts of permutations. They also are multiplicative with respect to
concatenation product of permutations. This leads to the following
algebra. A permutation is said to be connected if none of its cyclic shifts is
a concatenation product of two permutations, both of smaller orders. The
algebra A is freely generated by cyclic equivalence classes of connected
permutations.
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Algebras of permutations in theory of finite type knot
invariants

The algebra A is endowed with a natural comultiplication:

µ : A → A⊗A; µ : α 7→
∑

I⊔J={1,2,...,m}

α|I ⊗ α|J , α ∈ Sm,

which makes it into a graded Hopf algebra.
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Thank you
for your attention
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